LINEAR PROBLEMS IN THE SPACE OF POLINOMIALS OF DEGREE AT MOST 3

J. Sokó́, W. Szumny

Denote by $P_{n}, n \in \mathrm{~N}$ the linear space of real polynomials p of degree at most n. There are various ways in which we can introduce norm in P_{n}, here the problem is investigated when $\|p\|=$ $\max \{|p(x)|: x \in[-1 ; 1]\}$. Let $B_{n}=\left\{p \in P_{n}:\|p\| \leq 1\right\}$ be the unit ball and let $E B_{n}$ be the set of the extreme points of B_{n}, i.e. such points $p \in B_{n}$ that $B_{n} \backslash\{p\}$ is convex. The sets $E B_{0}, E B_{1}$ and $E B_{2}$ are known and it turns out that also $E B_{3}$ has a particularly simple form. In this paper we determine $E B_{3}$ and give some conclusions and applications of the main results. Moreover, several examples are included. The coefficient region for the polynomials of degree exceeding 3 seems very complicated.

Let $p \in P_{n}$ and let $N(p)$ be the number of all zeros of the polynomial $1-p^{2}$ in the interval $[-1 ; 1]$, counted according to multiplicity. In the case of complex polynomials, D.A. Brannan and J.G. Clunie [1] were able to characterize the extreme points partially. In the case of real polynomials, A.G. Konheim and T.J. Rivlin [2] proved for $p \in B_{n}$ that $p \in E B_{n}$ if and only if $N(p)>n$. We know that $E B_{0}=\{-1,1\}$ and $E B_{1}=$ $\{-1,1,-x, x\}$. Moreover W. Szumny [3] determined a precise form of $E B_{2}$, i.e.

$$
\begin{aligned}
E B_{2}=\{-1,1, & (c+2 \sqrt{2(1-c)}-3) x^{2}+2(c+\sqrt{2(1-c)}-1) x+c, \\
& (c+2 \sqrt{2(1-c)}-3) x^{2}-2(c+\sqrt{2(1-c)}-1) x+c \\
& (3-c-2 \sqrt{2(1-c)}) x^{2}+2(1-c-\sqrt{2(1-c)}) x-c \\
& (3-c-2 \sqrt{2(1-c)}) x^{2}+2(c+\sqrt{2(1-c)}-1) x-c \\
& \left.c \in\left[\frac{1}{2} ; 1\right] .\right\}
\end{aligned}
$$

For $p \in E B_{3}$ we have $N(p) \in\{4,5,6\}$ and
THEOREM 1. The set $E B_{3}$ consists of the functions $p_{1}(x)=a_{1} x^{3}+b_{1} x^{2}+$ $c_{1} x+d_{1}, p_{2}(x)=a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}, p_{3}(x)=a_{3} x^{3}+b_{3} x^{2}+c_{3} x+d_{3}$, $p_{4}(x) \equiv 1$ and $-p_{i}(x)$, where $i \in\{1,2,3,4\}$ and

$$
\begin{gather*}
a_{1}=\frac{4}{(\beta-\alpha)^{3}}, \quad b_{1}=-\frac{6(\alpha+\beta)}{(\beta-\alpha)^{3}}, \\
c_{1}=\frac{12 \alpha \beta}{(\beta-\alpha)^{3}}, \quad d_{1}=\frac{(\alpha+\beta)\left(\alpha^{2}-4 \alpha \beta+\beta^{2}\right)}{(\beta-\alpha)^{3}}, \tag{1}\\
a_{2}=\frac{1}{(1+\gamma)^{2}}, \quad b_{2}=-\frac{1+2 \gamma}{(1+\gamma)^{2}}, \\
c_{2}=\frac{\gamma(\gamma+2)}{(1+\gamma)^{2}}, \quad d_{2}=\frac{1+2 \gamma}{(1+\gamma)^{2}}, \tag{2}\\
a_{3}=\frac{-4 \delta}{\left(1-\delta^{2}\right)^{2}}, \quad b_{3}=\frac{2\left(3 \delta^{2}-1\right)}{\left(1-\delta^{2}\right)^{2}} \\
c_{3}=\frac{4 \delta}{\left(1-\delta^{2}\right)^{2}}, \quad d_{3}=\frac{1-4 \delta^{2}-\delta^{4}}{\left(1-\delta^{2}\right)^{2}}, \tag{3}
\end{gather*}
$$

the coefficient region for α, β is given on the fig. 1 and $\gamma \in\left[-\frac{1}{2} ; 1\right]$, $\delta \in\left[-\frac{1}{3} ; 0\right]$.
Proof. By simple consideration we see easy that $p(x) \equiv 1$ and $p(x) \equiv-1$ are the extreme points of B_{3}. Because the polynomial $q(x)=b x^{2}+c x+d$ cannot be an extreme point of B_{3} (apart from $q(x)=2 x^{2}-1$ and $q(x)=$ $-2 x^{2}+1$ where $\left.N(q)=4\right)$ then it is also sufficient to consider only the polynomials $p(x)=a x^{3}+b x^{2}+c x+d, a \neq 0$. For these polynomials we will consider three cases of $p \in E B_{3}$ described on the figures 2,3 and 4 :

The other extreme points of B_{3} may be obtained as their symmetrical.
Suppose that $p(x)=a x^{3}+b x^{2}+c x+d$ belongs to $E B_{3}$ and $p(\alpha)=1$, $p(\beta)=-1, p^{\prime}(\alpha)=p^{\prime}(\beta)=0$ (fig. 2). Thus we have

$$
\begin{gathered}
p(x)-1=a(x-\alpha)^{2}(x-u) \\
p(x)+1=a(x-\beta)^{2}(x-t)
\end{gathered}
$$

and

$$
\begin{aligned}
p^{\prime}(x)=a\left[2(x-\beta)(x-t)+(x-\beta)^{2}\right] & =a(x-\beta)(3 x-2 t-\beta) \\
p^{\prime}(x)=a\left[2(x-\alpha)(x-u)+(x-\alpha)^{2}\right] & =a(x-\alpha)(3 x-2 u-\alpha)
\end{aligned}
$$

Hence

$$
0=a(\alpha-\beta)(3 \alpha-2 t-\beta) \quad \text { and } \quad 0=a(\beta-\alpha)(3 \beta-2 u-\alpha) .
$$

Therefore

$$
3 \alpha-2 t-\beta=0 \quad \text { and } \quad 3 \beta-2 u-\alpha=0
$$

thus

$$
t=\frac{1}{2}(3 \alpha-\beta) \quad u=\frac{1}{2}(3 \beta-\alpha) .
$$

Because $p(\alpha)=1$ then

$$
\begin{gathered}
1=a(\alpha-\beta)^{2}\left[\alpha-\frac{1}{2}(3 \alpha-\beta)\right]-1, \\
\frac{1}{2} a(\alpha-\beta)^{2}(2 \alpha-3 \alpha+\beta)=2, \\
a(\alpha-\beta)^{2}(\beta-\alpha)=4, \quad a=\frac{4}{(\beta-\alpha)^{3}} .
\end{gathered}
$$

If $p(x)=a x^{3}+b x^{2}+c x+d$ and $p(x)=a(x-\alpha)^{2}(x-u)+1=$ $a x^{3}-a(u+2 \alpha) x^{2}+a \alpha(\alpha+2 u) x+1-a \alpha^{2} u$, then by comparing the coefficients of x^{2} and x we see that

$$
b=-a(u+2 \alpha), c=a \alpha(\alpha+2 u), d=1-a \alpha^{2} u .
$$

Hence we obtain (1).
Because $t \leq-1$ and $u \geq 1$ then $\frac{1}{2}(3 \alpha-\beta) \leq-1$ and $\frac{1}{2}(3 \beta-\alpha) \geq 1$ so we obtain the region given on the fig. 1. This completes the proof for the polynomial p_{1}.

Now let $p(x)=a x^{3}+b x^{2}+c x+d$ belongs to $E B_{3}$ and $p(-1)=-1$, $p(1)=1, p^{\prime}(\gamma)=p^{\prime}(\varepsilon)=0, p(\gamma)=1,-1 \leq p(\varepsilon) \leq 1$ (fig. 3). Then

$$
p(x)-1=a(x-\gamma)^{2}(x-1)
$$

and from $p(-1)=-1$ we obtain

$$
a=\frac{1}{(1+\gamma)^{2}}
$$

Because $b=-(1+2 \gamma) a, c=\gamma(\gamma+2) a, d=(1+2 \gamma) a$ we have (2) finally. In that

$$
p^{\prime}(x)=a(x-\gamma)(3 x-2-\gamma) \text { and } p^{\prime}(\varepsilon)=0 \text { and } \varepsilon=\gamma \text { iff } \varepsilon=\gamma=1
$$

SO

$$
\varepsilon=\frac{1}{3}(\gamma+2) .
$$

Since

$$
p(\varepsilon)=\frac{1}{(1+\gamma)^{2}}(\varepsilon-\gamma)^{2}(\varepsilon-1)+1 \text { and } p(\varepsilon) \geq-1
$$

then

$$
2(\gamma-1)^{3}+27(\gamma+1)^{2} \geq 0
$$

Hence $\gamma \in\left[-\frac{1}{2} ; 1\right]$ and this completes the proof for the polynomial p_{2}.
Now let $p \in E B_{3}$ and $p(1)=p(-1)=p(r)=-1, p(\delta)=p(s)=1$, $p^{\prime}(\delta)=p^{\prime}(\zeta)=0, \delta \in(-1 ; 1), 1 \leq \zeta \leq r<s$ (fig. 4). Thus we have

$$
p(x)+1=a(x-1)(x+1)(x-r) \text { and } p(\delta)=1
$$

hence

$$
\begin{gathered}
2=a\left(\delta^{2}-1\right)(\delta-r) \\
r=\delta-\frac{2}{a\left(\delta^{2}-1\right)}
\end{gathered}
$$

Because

$$
\begin{aligned}
p^{\prime}(x) & =a\left[2 x(x-r)+x^{2}-1\right]=a\left[3 x^{2}-2 r x-1\right]= \\
& =a\left[3 x^{2}-2 x\left(\delta-\frac{2}{a\left(\delta^{2}-1\right)}\right)-1\right]
\end{aligned}
$$

and $p^{\prime}(\delta)=0$ then

$$
\begin{gathered}
3 \delta^{2}-2 \delta\left(\delta-\frac{2}{a\left(\delta^{2}-1\right)}\right)-1=0 \\
a=\frac{-4 \delta}{\left(\delta^{2}-1\right)^{2}} .
\end{gathered}
$$

Thus

$$
\begin{gathered}
p(x)=\frac{-4 \delta}{\left(\delta^{2}-1\right)^{2}}\left(x^{2}-1\right)\left(x-\frac{3 \delta^{2}-1}{2 \delta}\right)-1= \\
=\frac{-4 \delta}{\left(\delta^{2}-1\right)^{2}} x^{3}+\frac{2\left(3 \delta^{2}-1\right)}{\left(\delta^{2}-1\right)^{2}} x^{2}+\frac{4 \delta}{\left(\delta^{2}-1\right)^{2}} x-\frac{2\left(3 \delta^{2}-1\right)}{\left(\delta^{2}-1\right)^{2}}-1 .
\end{gathered}
$$

Hence the polynomial p has coefficients the form (3). Because $r=\frac{3 \delta^{2}-1}{2 \delta}$ and $r \geq 1$ then $\delta(3 \delta+1)(\delta-1) \geq 1$, where $\delta<1$. Therefore $\delta \in\left[-\frac{1}{3} ; 0\right]$ and this completes the proof for p_{3} and endes the proof of theorem.

Corolary. 1. By using Theorem we can construct the extreme points of B_{3}, for example:
a) extreme points of B_{3} described on fig. 2.:
if $\quad \alpha=-\frac{1}{2}, \quad \beta=\frac{1}{2} \quad$ then $\quad p_{1}(x)=4 x^{3}-3 x$,
if $\quad \alpha=-1, \quad \beta=\frac{1}{3} \quad$ then $\quad p_{1}(x)=\frac{27}{16} x^{3}-\frac{27}{36} x^{2}-\frac{27}{16} x+\frac{11}{16}$,
if $\quad \alpha=-1, \quad \beta=1 \quad$ then $\quad p_{1}(x)=\frac{1}{2} x^{3}-\frac{3}{2} x$,
if $\quad \alpha=-\frac{3}{4}, \quad \beta=\frac{3}{4} \quad$ then $\quad p_{1}(x)=\frac{32}{27} x^{3}-2 x ;$
b) extreme points of B_{3} described on fig. 3.:
if $\quad \gamma=-\frac{1}{2} \quad$ then $\quad p_{2}(x)=4 x^{3}-3 x$,
if $\quad \gamma=-\frac{1}{3} \quad$ then $\quad p_{2}(x)=\frac{9}{4} x^{3}-\frac{3}{4} x^{2}-\frac{5}{4} x+\frac{3}{4}$,
if $\quad \gamma=0 \quad$ then $\quad p_{2}(x)=x^{3}-x^{2}+1, p_{2}(-x)=-x^{3}-x^{2}+1$,

$$
-p_{2}(x)=-x^{3}+x^{2}-1,-p_{2}(-x)=x^{3}+x^{2}-1,
$$

if $\quad \gamma=\frac{1}{2} \quad$ then $\quad p_{2}(x)=\frac{4}{9} x^{3}-\frac{8}{9} x^{2}+\frac{5}{8} x+\frac{8}{9}$,
if $\quad \gamma=1 \quad$ then $\quad p_{2}(x)=\frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{4} x+\frac{3}{4}$;
c) extreme points of B_{3} described on fig. 4.:
if $\quad \delta=-\frac{1}{3} \quad$ then $\quad p_{3}(x)=\frac{27}{16} x^{3}-\frac{27}{16} x^{2}-\frac{27}{16} x+\frac{11}{16}$,
if $\delta=-\frac{1}{4} \quad$ then $\quad p_{3}(x)=\frac{256}{225} x^{3}-\frac{416}{225} x^{2}-\frac{256}{225} x+\frac{191}{225}$,
if $\delta=0 \quad$ then $\quad p_{3}(x)=-2 x^{2}+1$.

Moreover we have
Corolary. 2. Let $p(x)=a x^{3}+b x^{2}+c x+d$ belongs to $E B_{3}$ and $p^{\prime}\left(x_{1}\right)=$ $p^{\prime}\left(x_{2}\right)=1-\left|p\left(x_{1}\right)\right|=0$ for some different $x_{1}, x_{2} \in[-1 ; 1]$.
a) If $\left|p\left(x_{2}\right)\right|=1$ then $|a| \in\left[\frac{1}{2} ; 4\right],|b| \leq \frac{27}{16},|c| \in\left[\frac{3}{2} ; 3\right],|d| \leq \frac{11}{16}$. The estimations of coefficients are sharp and being attained by polynomials given in Corollary 1.
b) If $\left|p\left(x_{2}\right)\right|<1$ then $|p(1)|=|p(-1)|=1$ and $|a| \in\left(\frac{1}{4} ; 4\right),|b| \leq 1$, $|c|<3,|d| \leq 1$, moreover $a+c=1, b+d=0$. The estimations of coefficients are sharp, it is easy to see looking at Corollary 1.

Corolary. 3. Let $p(x)=a x^{3}+b x^{2}+c x+d$ belongs to $E B_{3}$ and $p^{\prime}\left(x_{1}\right)=$ $p^{\prime}\left(x_{2}\right)=0,\left|p\left(x_{1}\right)\right|=|p(-1)|=|p(1)|=1$. If $\left|x_{1}\right|<1$ and $\left|x_{2}\right|>1$ then $|a|<\frac{27}{16},|b| \in\left(\frac{27}{16} ; 2\right),|c|<\frac{27}{16},|d| \in\left(\frac{11}{16} ; 1\right)$, moreover $a+c=0, b+d=-1$. The estimations are sharp, extremal polynomials are given in Corollary 1.

Also we have
Remark. 1. Let $p \in E B_{3}$ be described as on fig. 2.
a) If $t<-1$ and $n>1$ then $N(p)=4$.
b) If $t=-1$ and $n>1$ then $N(p)=5$ and $\beta=3 \alpha+2$, where $\alpha \in\left[-\frac{1}{2} ;-\frac{1}{3}\right]$.
c) If $t<-1, n=1$ then $N(p)=5$ and $\beta=\frac{1}{3} \alpha+\frac{2}{3}$, where $\alpha \in\left[-1 ;-\frac{1}{2}\right]$.
d) If $t=-1, n=1$ then $N(p)=6$ and $\alpha=-\frac{1}{2}, \beta=\frac{1}{2}, p(x)=4 x^{3}-3 x$, i.e. p is the Chebyshev polynomial of order 3 .

Remark. 2. We have some particular cases:
a) $\gamma=1$ (fig. 3) implies $p_{2}(x)=\frac{1}{4} x^{3}-\frac{3}{4} x^{2}+\frac{3}{4} x+\frac{3}{4}$, i.e. $p_{2}(x)-1=$ $\frac{1}{4}(x-1)^{3}$ and $p_{2}^{\prime}(x) \geq 0$ for all $x \in \mathrm{R}$;
b) $\delta=0$ (fig. 4) implies $p_{3}=-2 x^{2}+1$, i.e. p_{3} is the Chebyshev polynomial of order 2 ;
c) $\gamma=-\frac{1}{2}$ implies $p_{2}=p_{1}$ for $\alpha=-\frac{1}{2}, \beta=\frac{1}{2}$;
d) $\delta=-\frac{1}{3}$ implies $p_{3}=p_{1}$ for $\alpha=-\frac{1}{3}, \beta=1$.

Remark. 3. If $p \in E B_{4}$ then $N(p)>n$ and only these polynomials of degree 3 belong to $E B_{4}$ which have $N(p)=6$ or $N(p)=5$, i.e. $p(x)=$ $4 x^{3}-3 x$ or $p(x)=\frac{1}{2(\alpha+1)^{3}}(x-3 \alpha-2)(x+1)-1$ where $\alpha \in\left[-\frac{1}{2} ;-\frac{1}{3}\right]$ and their symmetrical.

Remark. 4. Only two polynomials of degree 3 belong to $E B_{5}$, i.e. $p(x)=$ $4 x^{3}-3 x$ and $p(x)=-4 x^{3}+3 x$.

Bibliography

[1] Brannan D. A, Clunie J. G. The extreme points of some classes of polynomials//Proc. Roy. Soc. Edinburgh. Sect. 1985. V. 101A. P. 99-110.
[2] Konhe A. G., i m, Rivlin T. J. Extreme points of the unit ball in a space of real polynomials// Amer. Math. Monthly. 1966. V. 73. P. 505-507.
[3] Szumny W. Extreme points of some unit ball in a space of real polynomials// Fol. Scient. Univ. Tech. Resov. 1994. V. 127. P. 73-77.

Department of Mathematics Technical University of Rzeszów, W. Pola 2, 35-959, Rzeszów, Poland

